Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 294
Filter
1.
Nucleic Acids Res ; 51(22): 12031-12042, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37953355

ABSTRACT

Molnupiravir (EIDD-2801) is an antiviral that received approval for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection. Treatment of bacteria or cell lines with the active form of molnupiravir, ß-d-N4-hydroxycytidine (NHC, or EIDD-1931), induces mutations in DNA. Yet these results contrast in vivo genotoxicity studies conducted during registration of the drug. Using a CRISPR screen, we found that inactivating the pyrimidine salvage pathway component uridine-cytidine kinase 2 (Uck2) renders cells more tolerant of NHC. Short-term exposure to NHC increased the mutation rate in a mouse myeloid cell line, with most mutations being T:A to C:G transitions. Inactivating Uck2 impaired the mutagenic activity of NHC, whereas over-expression of Uck2 enhanced mutagenesis. UCK2 is upregulated in many cancers and cell lines. Our results suggest differences in ribonucleoside metabolism contribute to the variable mutagenicity of NHC observed in cancer cell lines and primary tissues.


Subject(s)
Cytidine , Mutagens , Uridine Kinase , Animals , Mice , Antiviral Agents/toxicity , Cytidine/analogs & derivatives , Cytidine/pharmacology , Mutagenesis , Mutagens/pharmacology , RNA, Viral , Uridine Kinase/genetics , Uridine Kinase/metabolism
2.
Curr Drug Targets ; 24(11): 919-928, 2023.
Article in English | MEDLINE | ID: mdl-37534791

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is associated with a high mortality rate due to early recurrence and its metastasis features. To this day, effective treatment options for metastatic HCC remain a major challenge to patient treatment. Flavokawain B (FKB) is a naturally occurring chalcone molecule capable of providing effective therapy against this life-threatening disease. OBJECTIVE: This study investigated the anti-metastatic effects of FKB on the growth and development of metastatic HCC. METHODS: HepG2 cells were used in this study and a neutral red assay was performed to determine the IC50 value of FKB. Cell scratch and exclusion zone assays were performed to assess the rate of cell migration and invasion. Relative mRNA levels of UCK2, STAT3, VEGF and HIF-1α genes were quantified using RT-qPCR. RESULTS: FKB inhibited the proliferation of HepG2 cells at an IC50 value of 28 µM after 72 h of incubation. Its cytotoxic effect was confirmed to induce apoptosis through the phase-contrast inverted microscope. Cell migration and invasion were significantly inhibited at 7, 14, and 28 µM of FKB as compared to untreated cells. The inhibition in the cell migration significantly increased with the increasing concentrations of the bioactive compound. The relative expression levels of the UCK2 gene and its downstream genes, STAT3, VEGF and HIF-1α, were significantly downregulated after 72 h exposure to FKB treatment. CONCLUSION: Our data suggest that FKB inhibited HepG2 proliferation and further suppressed its metastasis partly by regulating the STAT3/Hif-1α/VEGF signalling pathway. FKB could be a potential alternative and viable strategy against HCC.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Vascular Endothelial Growth Factor A/genetics , Liver Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Proliferation , Cell Line, Tumor , Uridine Kinase , STAT3 Transcription Factor/pharmacology
3.
Cell Mol Biol Lett ; 27(1): 105, 2022 Nov 26.
Article in English | MEDLINE | ID: mdl-36447138

ABSTRACT

BACKGROUND: Pyrimidine metabolism is critical for tumour progression. Uridine-cytidine kinase 2 (UCK2), a key regulator of pyrimidine metabolism, is elevated during hepatocellular carcinoma (HCC) development and exhibits carcinogenic effects. However, the key mechanism of UCK2 promoting HCC and the therapeutic value of UCK2 are still undefined. The aim of this study is to investigate the potential of UCK2 as a therapeutic target for HCC. METHODS: Gene expression matrices were obtained from public databases. RNA-seq, co-immunoprecipitation and RNA-binding protein immunoprecipitation were used to determine the mechanism of UCK2 promoting HCC. Immune cell infiltration level and immune-related functional scores were evaluated to assess the link between tumour microenvironment and UCK2. RESULTS: In HCC, the expression of UCK2 was upregulated in part by TGFß1 stimulation. UCK2 promoted cell cycle progression of HCC by preventing the degradation of mTOR protein and maintaining the stability of PDPK1 mRNA. We also identified UCK2 as a novel RNA-binding protein. Downregulation of UCK2 induced cell cycle arrest and activated the TNFα/NFκB signalling pathway-related senescence-associated secretory phenotype to modify the tumour microenvironment. Additionally, UCK2 was a biomarker of the immunosuppressive microenvironment. Downregulated UCK2 induced a secretory phenotype, which could improve the microenvironment, and decreased UCK2 remodelling metabolism could lower the resistance of tumour cells to T-cell-mediated killing. CONCLUSIONS: Targeting UCK2 inhibits HCC progression and could improve the response to immunotherapy in patients with HCC. Our study suggests that UCK2 could be an ideal target for HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Uridine Kinase , Humans , 3-Phosphoinositide-Dependent Protein Kinases , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/immunology , Cell Cycle Checkpoints/drug effects , Cell Cycle Checkpoints/genetics , Cell Cycle Checkpoints/immunology , Immunity/genetics , Immunity/immunology , Liver Neoplasms/genetics , Liver Neoplasms/immunology , Pyrimidines , Tumor Microenvironment , Uridine Kinase/genetics , Uridine Kinase/immunology
4.
Biochemistry ; 61(21): 2261-2266, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36190114

ABSTRACT

Pyrimidine nucleotide biosynthesis in humans is a promising chemotherapeutic target for infectious diseases caused by RNA viruses. Because mammalian cells derive pyrimidine ribonucleotides through a combination of de novo biosynthesis and salvage, combined inhibition of dihydroorotate dehydrogenase (DHODH; the first committed step in de novo pyrimidine nucleotide biosynthesis) and uridine/cytidine kinase 2 (UCK2; the first step in salvage of exogenous nucleosides) strongly attenuates viral replication in infected cells. However, while several pharmacologically promising inhibitors of human DHODH are known, to date there are no reports of medicinally viable leads against UCK2. Here, we use structure-based drug prototyping to identify two classes of promising leads that noncompetitively inhibit UCK2 activity. In the process, we have identified a hitherto unknown allosteric site at the intersubunit interface of this homotetrameric enzyme. By reducing the kcat of human UCK2 without altering its KM, these new inhibitors have the potential to enable systematic dialing of the fractional inhibition of pyrimidine salvage to achieve the desired antiviral effect with minimal host toxicity.


Subject(s)
Pyrimidine Nucleotides , Uridine Kinase , Humans , Uridine , Uridine Kinase/antagonists & inhibitors
5.
Biochem J ; 479(11): 1149-1164, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35583288

ABSTRACT

Uridine-cytidine kinase like-1 (UCKL-1) is a largely uncharacterized protein with high sequence similarity to other uridine-cytidine kinases (UCKs). UCKs play an important role in the pyrimidine salvage pathway, catalyzing the phosphorylation of uridine and cytidine to UMP and CMP, respectively. Only two human UCKs have been identified, UCK1 and UCK2. Previous studies have shown both enzymes phosphorylate uridine and cytidine using ATP as the phosphate donor. No studies have evaluated the kinase potential of UCKL-1. We cloned and purified UCKL-1 and found that it successfully phosphorylated uridine and cytidine using ATP as the phosphate donor. The catalytic efficiency (calculated as kcat/KM) was 1.2 × 104 s-1, M-1 for uridine and 0.7 × 104 s-1, M-1 for cytidine. Our lab has previously shown that UCKL-1 is up-regulated in tumor cells, providing protection against natural killer (NK) cell killing activity. We utilized small interfering RNA (siRNA) to down-regulate UCKL-1 in vitro and in vivo to determine the effect of UCKL-1 on tumor growth and metastasis. The down-regulation of UCKL-1 in YAC-1 lymphoma cells in vitro resulted in decreased cell counts and increased apoptotic activity. Down-regulation of UCKL-1 in K562 leukemia cells in vivo led to decreased primary tumor growth and less tumor cell dissemination and metastasis. These results identify UCKL-1 as a bona fide pyrimidine kinase with the therapeutic potential to be a target for tumor growth inhibition and for diminishing or preventing metastasis.


Subject(s)
Cytidine , Uridine Kinase/metabolism , Adenosine Triphosphate/metabolism , Cytidine/genetics , Cytidine/metabolism , Cytidine/pharmacology , Humans , Phosphates , Phosphorylation , Phosphotransferases , Pyrimidines/metabolism , RNA, Small Interfering/metabolism , Uridine/metabolism , Uridine Kinase/genetics
6.
Future Oncol ; 18(8): 979-990, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35137600

ABSTRACT

Objective: This study mainly explores how UCK2 impacts the progression of hepatocellular carcinoma (HCC). Methods: Mature miRNA and mRNA expression data along with the clinical data of HCC were provided by The Cancer Genome Atlas to mine differentially expressed miRNAs and mRNAs. Expression levels of UCK2 and miR-139-3p in HCC were tested through quantitative real-time PCR. How UCK2 and miR-139-3p impacted HCC cell activities were detected by Transwell, wound healing and cell proliferation approaches. Whether miR-139-3p could bind to UCK2 was detected by dual-luciferase assay. Results: This investigation found evidently high levels of UCK2 in both HCC tissue and cells and its marked association with poor prognosis. Overexpression of UCK2 could significantly promote the behaviors of HCC cells. In addition, poorly expressed miR-139-3p was inversely associated with UCK2. Dual-luciferase method also proved the association. The rescue experiment showed that miR-139-3p regulated cell behaviors in HCC through targeting UCK2. Conclusion: Highly expressed UCK2 was mediated by miR-139-3p to modulate cell behaviors in HCC. It is assumed that UCK2 is a possible target of HCC for cancer therapy purposes.


Globally, a large number of patients succumb to hepatocellular carcinoma (HCC) each year. Only 10­37% patients can undergo surgery because of hepatic failure and advanced tumors. Though the recovery rate after excision is 20­30%, the 5-year survival rate is low, and postoperative recurrence rate is high. Despite the widespread application of HCC screening, only few patients in the early stage have been diagnosed. Hence, it is urgent to explore its potential mechanism. This study investigates the relationship between aberrant expression of mRNA and malignancy of HCC cells. Finally, the abnormally high expression of UCK2 is correlated with patients' low survival rate and poor prognosis.


Subject(s)
Carcinoma, Hepatocellular/pathology , Gene Expression Regulation, Neoplastic , Liver Neoplasms/pathology , MicroRNAs/metabolism , Uridine Kinase/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Disease Progression , Humans
7.
Int J Cancer ; 150(7): 1184-1197, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34913485

ABSTRACT

Adult T-cell leukemia-lymphoma (ATL) is an aggressive neoplasm derived from T-cells transformed by human T-cell lymphotropic virus-1 (HTLV-1). Recently, we reported that regional DNA hypermethylation in HTLV-1-infected T-cells reflects the disease status of ATL and the anti-ATL effects of DNA demethylating agents, including azacitidine (AZA), decitabine (DAC) and a new DAC prodrug, OR-2100 (OR21), which we developed. Here, to better understand the mechanisms underlying drug resistance, we generated AZA-, DAC- and OR21-resistant (AZA-R, DAC-R and OR21-R, respectively) cells from the ATL cell line TL-Om1 and the HTLV-1-infected cell line MT-2 via long-term drug exposure. The efficacy of OR21 was almost the same as that of DAC, indicating that the pharmacodynamics of OR21 were due to release of DAC from OR21. Resistant cells did not show cellular responses observed in parental cells induced by treatment with drugs, including growth suppression, depletion of DNA methyltransferase DNMT1 and DNA hypomethylation. We also found that reduced expression of deoxycytidine kinase (DCK) correlated with lower susceptibility to DAC/OR21 and that reduced expression of uridine cytidine kinase2 (UCK2) correlated with reduced susceptibility to AZA. DCK and UCK2 catalyze phosphorylation of DAC and AZA, respectively; reconstitution of expression reversed the resistant phenotypes. A large homozygous deletion in DCK and a homozygous splice donor site mutation in UCK2 were identified in DAC-R TL-Om1 and AZA-R TL-Om1, respectively. Both genomic mutations might lead to loss of protein expression. Thus, inactivation of UCK2 and DCK might be a putative cause of phenotypes that are resistant to AZA and DAC/OR21, respectively.


Subject(s)
Antineoplastic Agents/therapeutic use , DNA Methylation/drug effects , Deoxycytidine Kinase/physiology , Leukemia-Lymphoma, Adult T-Cell/drug therapy , Pyrimidines/metabolism , Uridine Kinase/physiology , Azacitidine/therapeutic use , Cell Line, Tumor , Decitabine/therapeutic use , Drug Resistance, Neoplasm , Humans , Leukemia-Lymphoma, Adult T-Cell/metabolism , Pyridines/therapeutic use
8.
Leukemia ; 35(4): 1023-1036, 2021 04.
Article in English | MEDLINE | ID: mdl-32770088

ABSTRACT

Mechanisms-of-resistance to decitabine and 5-azacytidine, mainstay treatments for myeloid malignancies, require investigation and countermeasures. Both are nucleoside analog pro-drugs processed by pyrimidine metabolism into a deoxynucleotide analog that depletes the key epigenetic regulator DNA methyltranseferase 1 (DNMT1). Here, upon serial analyses of DNMT1 levels in patients' bone marrows on-therapy, we found DNMT1 was not depleted at relapse. Showing why, bone marrows at relapse exhibited shifts in expression of key pyrimidine metabolism enzymes in directions adverse to pro-drug activation. Further investigation revealed the origin of these shifts. Pyrimidine metabolism is a network that senses and regulates deoxynucleotide amounts. Deoxynucleotide amounts were disturbed by single exposures to decitabine or 5-azacytidine, via off-target depletion of thymidylate synthase and ribonucleotide reductase respectively. Compensating pyrimidine metabolism shifts peaked 72-96 h later. Continuous pro-drug exposures stabilized these adaptive metabolic responses to thereby prevent DNMT1-depletion and permit exponential leukemia out-growth as soon as day 40. The consistency of the acute metabolic responses enabled exploitation: simple treatment modifications in xenotransplant models of chemorefractory leukemia extended noncytotoxic DNMT1-depletion and leukemia control by several months. In sum, resistance to decitabine and 5-azacytidine originates from adaptive responses of the pyrimidine metabolism network; these responses can be anticipated and thus exploited.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Azacitidine/pharmacology , Decitabine/pharmacology , Drug Resistance, Neoplasm , Metabolic Networks and Pathways/drug effects , Pyrimidines/metabolism , Animals , Antimetabolites, Antineoplastic/therapeutic use , Azacitidine/therapeutic use , Cell Line, Tumor , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA Methylation , Decitabine/therapeutic use , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Resistance, Neoplasm/genetics , Humans , Mice , Uridine Kinase/genetics , Uridine Kinase/metabolism
9.
J Agric Food Chem ; 68(34): 9188-9194, 2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32806118

ABSTRACT

A rapid in vitro enzymatic biosynthesis system has been developed as a biological manufacturing platform with potential industrial uses. Cytidine 5'-monophosphate (5'-CMP) is a key intermediate in the preparation of several nucleotide derivatives and is widely used in food and pharmaceutical industries. In this study, a highly efficient biosynthesis system was constructed for manufacturing 5'-CMP in vitro. Cytidine kinase (CK) was used for the biotransformation of cytidine to 5'-CMP, while polyphosphate kinase (PPK) was coupled for adenosine triphosphate regeneration. Both CK and PPK were selected from extremophiles, possessing great potential for biocatalytic synthesis. The effects of temperature, substrate concentration, and enzyme ratios were investigated to enhance the titer and yield of 5'-CMP. After optimization, 96 mM 5'-CMP was produced within 6 h, and the yield reached nearly 100%. This work highlights the ease of 5'-CMP production by an in vitro biomanufacturing platform and provides a green and efficient approach for the industrial synthesis of 5'-CMP.


Subject(s)
Bacteria/enzymology , Bacterial Proteins/metabolism , Cytidine Monophosphate/biosynthesis , Extremophiles/metabolism , Amino Acid Sequence , Bacteria/chemistry , Bacteria/genetics , Bacteria/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Biotransformation , Cytidine Monophosphate/chemistry , Enzyme Stability , Extremophiles/chemistry , Extremophiles/enzymology , Extremophiles/genetics , Phosphotransferases (Phosphate Group Acceptor)/chemistry , Phosphotransferases (Phosphate Group Acceptor)/genetics , Phosphotransferases (Phosphate Group Acceptor)/metabolism , Sequence Alignment , Uridine Kinase/chemistry , Uridine Kinase/genetics , Uridine Kinase/metabolism
10.
Circulation ; 142(9): 882-898, 2020 09.
Article in English | MEDLINE | ID: mdl-32640834

ABSTRACT

BACKGROUND: Cardiac hypertrophic growth is mediated by robust changes in gene expression and changes that underlie the increase in cardiomyocyte size. The former is regulated by RNA polymerase II (pol II) de novo recruitment or loss; the latter involves incremental increases in the transcriptional elongation activity of pol II that is preassembled at the transcription start site. The differential regulation of these distinct processes by transcription factors remains unknown. Forkhead box protein O1 (FoxO1) is an insulin-sensitive transcription factor that is also regulated by hypertrophic stimuli in the heart. However, the scope of its gene regulation remains unexplored. METHODS: To address this, we performed FoxO1 chromatin immunoprecipitation-deep sequencing in mouse hearts after 7 days of isoproterenol injections (3 mg·kg-1·mg-1), transverse aortic constriction, or vehicle injection/sham surgery. RESULTS: Our data demonstrate increases in FoxO1 chromatin binding during cardiac hypertrophic growth, which positively correlate with extent of hypertrophy. To assess the role of FoxO1 on pol II dynamics and gene expression, the FoxO1 chromatin immunoprecipitation-deep sequencing results were aligned with those of pol II chromatin immunoprecipitation-deep sequencing across the chromosomal coordinates of sham- or transverse aortic constriction-operated mouse hearts. This uncovered that FoxO1 binds to the promoters of 60% of cardiac-expressed genes at baseline and 91% after transverse aortic constriction. FoxO1 binding is increased in genes regulated by pol II de novo recruitment, loss, or pause-release. In vitro, endothelin-1- and, in vivo, pressure overload-induced cardiomyocyte hypertrophic growth is prevented with FoxO1 knockdown or deletion, which was accompanied by reductions in inducible genes, including Comtd1 in vitro and Fstl1 and Uck2 in vivo. CONCLUSIONS: Together, our data suggest that FoxO1 may mediate cardiac hypertrophic growth via regulation of pol II de novo recruitment and pause-release; the latter represents the majority (59%) of FoxO1-bound, pol II-regulated genes after pressure overload. These findings demonstrate the breadth of transcriptional regulation by FoxO1 during cardiac hypertrophy, information that is essential for its therapeutic targeting.


Subject(s)
Cardiomegaly/metabolism , Follistatin-Related Proteins/metabolism , Forkhead Box Protein O1/metabolism , Uridine Kinase/metabolism , Animals , Cardiomegaly/genetics , Follistatin-Related Proteins/genetics , Forkhead Box Protein O1/genetics , Mice , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Uridine Kinase/genetics
11.
Sheng Wu Gong Cheng Xue Bao ; 36(5): 1002-1011, 2020 May 25.
Article in Chinese | MEDLINE | ID: mdl-32567283

ABSTRACT

Uridine-cytidine kinase, an important catalyst in the compensation pathway of nucleotide metabolism, can catalyze the phosphorylation reaction of cytidine to 5'-cytidine monophosphate (CMP), but the reaction needs NTP as the phosphate donor. To increase the production efficiency of CMP, uridine-cytidine kinase gene from Thermus thermophilus HB8 and polyphosphate kinase gene from Rhodobacter sphaeroides were cloned and expressed in Escherichia coli BL21(DE3). Uridine-cytidine kinase was used for the generation of CMP from cytidine and ATP, and polyphosphate kinase was used for the regeneration of ATP. Then, the D403 metal chelate resin was used to adsorb Ni²âº to form an immobilized carrier, and the immobilized carrier was specifically combined with the recombinant enzymes to form the immobilized enzymes. Finally, single-factor optimization experiment was carried out to determine the reaction conditions of the immobilized enzyme. At 30 °C and pH 8.0, 60 mmol/L cytidine and 0.5 mmol/L ATP were used as substrates to achieve 5 batches of high-efficiency continuous catalytic reaction, and the average molar yield of CMP reached 91.2%. The above method has the advantages of low reaction cost, high product yield and high enzyme utilization rate, and has good applied value for industrial production.


Subject(s)
Cytidine Monophosphate , Industrial Microbiology , Phosphotransferases (Phosphate Group Acceptor) , Uridine Kinase , Cytidine Monophosphate/metabolism , Escherichia coli/genetics , Industrial Microbiology/methods , Phosphotransferases (Phosphate Group Acceptor)/metabolism
12.
Nat Methods ; 17(3): 311-318, 2020 03.
Article in English | MEDLINE | ID: mdl-32015544

ABSTRACT

Tissues and organs are composed of diverse cell types, which poses a major challenge for cell-type-specific profiling of gene expression. Current metabolic labeling methods rely on exogenous pyrimidine analogs that are only incorporated into RNA in cells expressing an exogenous enzyme. This approach assumes that off-target cells cannot incorporate these analogs. We disprove this assumption and identify and characterize the enzymatic pathways responsible for high background incorporation. We demonstrate that mammalian cells can incorporate uracil analogs and characterize the enzymatic pathways responsible for high background incorporation. To overcome these limitations, we developed a new small molecule-enzyme pair consisting of uridine/cytidine kinase 2 and 2'-azidouridine. We demonstrate that 2'-azidouridine is only incorporated in cells expressing uridine/cytidine kinase 2 and characterize selectivity mechanisms using molecular dynamics and X-ray crystallography. Furthermore, this pair can be used to purify and track RNA from specific cellular populations, making it ideal for high-resolution cell-specific RNA labeling. Overall, these results reveal new aspects of mammalian salvage pathways and serve as a new benchmark for designing, characterizing and evaluating methodologies for cell-specific labeling of biomolecules.


Subject(s)
RNA/chemistry , Uracil/chemistry , Animals , Azides/chemistry , Biotinylation , Catalytic Domain , Coculture Techniques , Deoxyuridine/analogs & derivatives , Deoxyuridine/chemistry , HEK293 Cells , HeLa Cells , Humans , Kinetics , Mice , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , NIH 3T3 Cells , Nucleoside-Phosphate Kinase/metabolism , Protein Domains , RNA, Small Interfering/genetics , Uridine/chemistry , Uridine Kinase/metabolism
13.
Theranostics ; 10(3): 1046-1059, 2020.
Article in English | MEDLINE | ID: mdl-31938050

ABSTRACT

Resistance to the chemotherapeutic drug 5'-azacytidine (5'-AZA) is a major obstacle in the treatment of patients with acute myeloid leukemia (AML). The uridine-cytidine kinase 1 (UCK1) has an established role in activating 5'-AZA and its protein level is significantly downregulated in patients resistant to the drug. However, the underlying molecular mechanism for the reduced UCK1 expression remains to be elucidated. Methods: Using mass spectrometry and molecular biochemistry analyses, we identified specific enzymes mediating UCK1 degradation. Human AML cell lines and murine AML model were used to characterize the effects of these enzymes on 5'-AZA resistance. Results: We demonstrated that the ubiquitin E3 ligase KLHL2 interacted with UCK1 and mediated its polyubiquitination at the K81 residue and degradation. We showed that deubiquitinase USP28 antagonized KLHL2-mediated polyubiquitylation of UCK1. We also provided evidence that ATM-mediated phosphorylation of USP28 resulted in its disassociation from KLHL2 and UCK1 destabilization. Conversely, UCK1 phosphorylation by 5'-AZA-activated ATM enhanced the KLHL2-UCK1 complex formation. Importantly, silencing KLHL2 or USP28 overexpression not only inhibited AML cell proliferation but also sensitized AML cells to 5'-AZA-induced apoptosis in vitro and in vivo. These results were no longer observed in USP28-deficient cells. Conclusions: Our study revealed a novel mechanism by which the KLHL2/USP28/ATM axis mediates resistance of AML cells to 5'-AZA by regulating UCK1 ubiquitination and phosphorylation. These results have direct clinical implications and provide a rationale for the combination drug treatment of AML patients.


Subject(s)
Azacitidine , Drug Resistance, Neoplasm , Enzyme Inhibitors , Leukemia, Myeloid, Acute , Microfilament Proteins/metabolism , Nerve Tissue Proteins/metabolism , Ubiquitin Thiolesterase/metabolism , Animals , Ataxia Telangiectasia Mutated Proteins/metabolism , Azacitidine/therapeutic use , Enzyme Inhibitors/therapeutic use , HEK293 Cells , HL-60 Cells , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Male , Mice , Mice, Inbred NOD , Mice, SCID , Uridine Kinase/metabolism
14.
J Cell Physiol ; 235(2): 1624-1636, 2020 02.
Article in English | MEDLINE | ID: mdl-31309563

ABSTRACT

While hundreds of consistently altered metabolic genes had been identified in hepatocellular carcinoma (HCC), the prognostic role of them remains to be further elucidated. Messenger RNA expression profiles and clinicopathological data were downloaded from The Cancer Genome Atlas-Liver Hepatocellular Carcinoma and GSE14520 data set from the Gene Expression Omnibus database. Univariate Cox regression analysis and lasso Cox regression model established a novel four-gene metabolic signature (including acetyl-CoA acetyltransferase 1, glutamic-oxaloacetic transaminase 2, phosphatidylserine synthase 2, and uridine-cytidine kinase 2) for HCC prognosis prediction. Patients in the high-risk group shown significantly poorer survival than patients in the low-risk group. The signature was significantly correlated with other negative prognostic factors such as higher α-fetoprotein. The signature was found to be an independent prognostic factor for HCC survival. Nomogram including the signature shown some clinical net benefit for overall survival prediction. Furthermore, gene set enrichment analyses revealed several significantly enriched pathways, which might help explain the underlying mechanisms. Our study identified a novel robust four-gene metabolic signature for HCC prognosis prediction. The signature might reflect the dysregulated metabolic microenvironment and provided potential biomarkers for metabolic therapy and treatment response prediction in HCC.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Transcriptome/genetics , Acetyl-CoA C-Acetyltransferase/genetics , Acetyl-CoA C-Acetyltransferase/metabolism , Adult , Aged , Aspartate Aminotransferases/genetics , Aspartate Aminotransferases/metabolism , Biomarkers, Tumor/metabolism , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/mortality , Female , Humans , Kaplan-Meier Estimate , Liver Neoplasms/metabolism , Liver Neoplasms/mortality , Male , Middle Aged , Nitrogenous Group Transferases/genetics , Nitrogenous Group Transferases/metabolism , Nomograms , Prognosis , Uridine Kinase/genetics , Uridine Kinase/metabolism
15.
Chinese Journal of Biotechnology ; (12): 1002-1011, 2020.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-826876

ABSTRACT

Uridine-cytidine kinase, an important catalyst in the compensation pathway of nucleotide metabolism, can catalyze the phosphorylation reaction of cytidine to 5'-cytidine monophosphate (CMP), but the reaction needs NTP as the phosphate donor. To increase the production efficiency of CMP, uridine-cytidine kinase gene from Thermus thermophilus HB8 and polyphosphate kinase gene from Rhodobacter sphaeroides were cloned and expressed in Escherichia coli BL21(DE3). Uridine-cytidine kinase was used for the generation of CMP from cytidine and ATP, and polyphosphate kinase was used for the regeneration of ATP. Then, the D403 metal chelate resin was used to adsorb Ni²⁺ to form an immobilized carrier, and the immobilized carrier was specifically combined with the recombinant enzymes to form the immobilized enzymes. Finally, single-factor optimization experiment was carried out to determine the reaction conditions of the immobilized enzyme. At 30 °C and pH 8.0, 60 mmol/L cytidine and 0.5 mmol/L ATP were used as substrates to achieve 5 batches of high-efficiency continuous catalytic reaction, and the average molar yield of CMP reached 91.2%. The above method has the advantages of low reaction cost, high product yield and high enzyme utilization rate, and has good applied value for industrial production.


Subject(s)
Cytidine Monophosphate , Metabolism , Escherichia coli , Genetics , Industrial Microbiology , Methods , Phosphotransferases (Phosphate Group Acceptor) , Metabolism , Uridine Kinase
16.
Bioorg Med Chem Lett ; 29(18): 2559-2564, 2019 09 15.
Article in English | MEDLINE | ID: mdl-31420268

ABSTRACT

Clinically relevant inhibitors of dihydroorotate dehydrogenase (DHODH), a rate-limiting enzyme in mammalian de novo pyrimidine synthesis, have strong antiviral and anticancer activity in vitro. However, they are ineffective in vivo due to efficient uridine salvage by infected or rapidly dividing cells. The pyrimidine salvage enzyme uridine-cytidine kinase 2 (UCK2), a ∼29 kDa protein that forms a tetramer in its active state, is necessary for uridine salvage. Notwithstanding the pharmacological potential of this target, no medicinally tractable inhibitors of the human enzyme have been reported to date. We therefore established and miniaturized an in vitro assay for UCK2 activity and undertook a high-throughput screen against a ∼40,000-compound library to generate drug-like leads. The structures, activities, and modes of inhibition of the most promising hits are described. Notably, our screen yielded non-competitive UCK2 inhibitors which were able to suppress nucleoside salvage in cells both in the presence and absence of DHODH inhibitors.


Subject(s)
Drug Discovery , Enzyme Inhibitors/pharmacology , High-Throughput Screening Assays , Small Molecule Libraries/pharmacology , Uridine Kinase/antagonists & inhibitors , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Molecular Structure , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship , Uridine Kinase/metabolism
17.
Anticancer Res ; 39(7): 3609-3614, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31262886

ABSTRACT

BACKGROUND/AIM: The novel cytidine analog RX-3117, which is activated by uridine-cytidine kinase 2 (UCK2), shows encouraging activity in pancreatic and bladder cancer Phase IIa studies. In this study we highlight the potential role of UCK2 as a biomarker for selecting patients for RX-3117 treatment. PATIENTS AND METHODS: The online genomics analysis and visualization platform, R2, developed by the Oncogenomics department at the AMC (Amsterdam, The Netherlands) was used for in silico UCK2-mRNA correlation with overall survival of pancreatic cancer patients, while UCK2 protein expression was evaluated by immunohistochemistry on pancreatic tumor formalin-fixed-paraffin-embedded sections from independent pancreatic cancer patients. mRNA expression was also determined for SUIT-2, PANC-1 and PDAC-3. Lastly, the drug sensitivity to RX-3117 was investigated using the Sulforhodamine-B cytotoxicity assay. RESULTS: The in silico data showed that a high UCK2-mRNA expression was correlated with a shorter overall survival in pancreatic cancer patients. Moreover, UCK2 protein expression was high in 21/25 patients, showing a significantly shorter mean. Overall Survival (8.4 versus 34.3 months, p=0.045). Sensitivity to RX-3117 varied between 0.6 and 11 µM. CONCLUSION: Pancreatic cancer cells are sensitive to pharmacologically achievable RX-3117 concentrations and UCK2 might be exploited as a biomarker for patient treatment selection.


Subject(s)
Adenocarcinoma/drug therapy , Antineoplastic Agents/pharmacology , Biomarkers, Tumor/metabolism , Cytidine/analogs & derivatives , Pancreatic Neoplasms/drug therapy , Uridine Kinase/metabolism , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Aged , Biomarkers, Tumor/genetics , Cell Line, Tumor , Cytidine/pharmacology , Female , Humans , Male , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , RNA, Messenger/metabolism , Uridine Kinase/genetics
18.
Cancer Sci ; 110(9): 2734-2747, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31278886

ABSTRACT

Lung cancer has the highest morbidity and mortality among all cancers. Discovery of early diagnostic and prognostic biomarkers of lung cancer can greatly facilitate the survival rate and reduce its mortality. In our study, by analyzing Gene Expression Omnibus and Oncomine databases, we found a novel potential oncogene uridine-cytidine kinase 2 (UCK2), which was overexpressed in lung tumor tissues compared to adjacent nontumor tissues or normal lung. Then we confirmed this finding in clinical samples. Specifically, UCK2 was identified as highly expressed in stage IA lung cancer with a high diagnostic accuracy (area under the receiver operating characteristic curve > 0.9). We also found that high UCK2 expression was related to poorer clinicopathological features, such as higher T stage and N stage and higher probability of early recurrence. Furthermore, we found that patients with high UCK2 expression had poorer first progression survival and overall survival than patients with low UCK2 expression. Univariate and multivariate Cox regression analyses showed that UCK2 was an independent risk factor related with worse DFS and OS. By gene set enrichment analysis, tumor-associated biological processes and signaling pathways were enriched in the UCK2 overexpression group, which indicated that UCK2 might play a vital role in lung cancer. Furthermore, in cytology experiments, we found that knockdown of UCK2 could suppress the proliferation and migration of lung cancer cells. In conclusion, our study indicated that UCK2 might be a potential early diagnostic and prognostic biomarker for lung cancer.


Subject(s)
Biomarkers, Tumor/metabolism , Lung Neoplasms/pathology , Neoplasm Recurrence, Local/diagnosis , Uridine Kinase/metabolism , Aged , Cell Line, Tumor , Cell Proliferation , Datasets as Topic , Disease-Free Survival , Female , Gene Knockdown Techniques , Humans , Lung/pathology , Lung Neoplasms/mortality , Lung Neoplasms/therapy , Male , Middle Aged , Neoplasm Recurrence, Local/pathology , Neoplasm Staging , Prognosis , Survival Analysis , Uridine Kinase/genetics
19.
Biomed Pharmacother ; 109: 1506-1510, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30551402

ABSTRACT

Apoptosis is a series of molecular signalling regulating normal cellular growth and development. Cells resistance to apoptosis, however, leads to uncontrolled proliferation. Research involving cancer cell death is one of the most important targeted areas in the discovery of novel anticancer therapy. There are several biochemical pathways that are liked towards cancer cell death of which, uridine-cytidine kinase 2 (UCK2) was recently linked to cell apoptosis induction. UCK2 is responsible for the phosphorylation of uridine and cytidine to their corresponding monophosphate in a salvage pathway of pyrimidine nucleotides biosynthesis. Cytotoxic ribonucleoside analogues that target UCK2 enzyme activity are currently being investigated in clinical trials useful for cancer treatment. Whilst findings have clearly shown that these antimetabolites inhibit cancer development in clinical settings, they have yet to establish linking cytotoxic nucleoside analogues to cancer cell death. In this present review, we propose the probable molecular crosstalk involving UCK2 protein and cancer cell death through cell cycle arrest and triggering of apoptosis involving proteins, MDM2 and the subsequent activation of p53.


Subject(s)
Apoptosis/physiology , Cell Death/physiology , Neoplasms/metabolism , Uridine Kinase/metabolism , Cell Cycle Checkpoints/physiology , Cell Proliferation/physiology , Humans
20.
IUBMB Life ; 71(1): 105-112, 2019 01.
Article in English | MEDLINE | ID: mdl-30304569

ABSTRACT

Uridine-cytidine kinases (encoded by UCK1, UCKL1, and UCK2) catalyze the phosphorylation of uridine and cytidine to uridine monophosphate (UMP) and cytidine monophosphate (CMP). In this study, using data from the Cancer Genome Atlas (TCGA), we analyzed the expression profile of uridine-cytidine kinase genes in hepatocellular carcinoma (HCC), their prognostic value, and the epigenetic alterations associated with their dysregulation. Results showed that UCKL1 and UCK2, but not UCK1 were significantly upregulated in HCC tissues than in adjacent normal tissues. Only UCK2 was significantly upregulated in the deceased group and the recurrence group, compared to the control groups. Multivariate analysis confirmed that increased UCK2 expression was an independent prognostic indicator of shorter overall survival (OS) (HR: 1.760, 95% CI: 1.398-2.216, P < 0.001) and recurrence-free survival (RFS) (HR: 1.543, 95% CI: 1.232-1.933, P < 0.001). Two CpG sites (cg09277749 and cg21143899) were significantly hypomethylated in HCC tissues than in adjacent normal tissues and were negatively correlated with UCK2 expression. However, survival analysis showed that only high methylation of cg0927774 was associated with better OS and RFS of HCC patients. Based on the findings above, we infer that UCK2 upregulation might be a valuable prognostic marker in HCC. The methylation of status cg0927774 might play a critical role in its expression. © 2018 IUBMB Life, 71(1):105-112, 2019.


Subject(s)
Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Prognosis , Uridine Kinase/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cytidine/metabolism , DNA Methylation/genetics , Disease-Free Survival , Female , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Male , Middle Aged , Nucleoside-Phosphate Kinase/genetics , Phosphorylation , Uridine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...